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ABSTRACT 
Simulation-based study plays an important role in experimenting, 
understanding, and evaluating intelligent robotic systems. While 
robot models can be created and studied in a simulated environment, 
replacing some of the robot models with their real robot counterparts 
brings simulation-based study one step closer to the reality. It also 
provides the flexibility to allow real robots to be experimented 
within a virtual environment. This capability of robot-in-the-loop 
simulation is especially useful for large-scale cooperative robotic 
systems whose complexity and scalability severely limit the 
possibility for study and evaluation in a physical environment with 
real robots. This paper presents a simulation-based approach that 
allows a cooperative robotic system to be effectively evaluated in a 
virtual environment with combined real and virtual robots. This 
capability adds to conventional simulation-based study to form an 
integrated measuring process. An example of robotic convoy system 
is presented together with metrics to measure the formation 
coherence of cooperative robotic system. Some preliminary 
simulation results are presented.  
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1. INTRODUCTION 
Cooperative robotic systems couple computational 
intelligence to the physical world. These systems consist of 
multiple homogenous or heterogeneous robots that perceive 
the environment, make decisions, and carry out commands to 
affect the environment. Communication and cooperation is 
important for theses systems since their robots work as a 
collective team to finish common tasks. Several taxonomies 
and metrics have been defined to classify these systems. For 
example, Dudek, etc. [1] classifies robotic collectives along 
seven dimensions: size of the collective, communication 
range, communication topology, communication bandwidth, 
collective reconfigurability, processing ability of each 
collective unit, and collective composition. Balch [2] 

classifies the performance metric of multirobot tasks based on 
time, subject of action, resource limits, group movement, 
platform capabilities, etc. 

The increasing complexity of collective robotic systems 
calls for systematic methods as well as supporting 
environments to experiment, understand, and evaluate these 
systems. To serve this purpose, modeling and simulation 
technologies are frequently applied. With simulation-based 
methods, models of robots can be built and simulated. 
Different configurations can be easily applied to experiment 
and measure the performance of the system under 
development. To allow simulation of robotic systems that 
actively interact with an external environment, an 
environment model needs to be created. This environment 
model serves as a “virtual” environment to provide sensory 
input to robot models and to response to robots’ actuation. For 
example, a virtual environment for mobile robots simulation 
can have virtual obstacles that can be sensed by robot models, 
and it responds to robots’ movements by updating new 
sensory information to robot models.  

While robot models can be created and studied in a 
simulated environment, replacing some of the robot models 
with their real robot counterparts will bring simulation-based 
study one step closer to the reality and provides the flexibility 
to allows real robots to be experimented in a virtual 
environment. This capability of robot-in-the-loop simulation 
is especially useful for large-scale cooperative robotic 
systems whose complexity and scalability severely limit 
experimentation in a physical environment using all real 
robots. This paper presents an approach that allows a 
cooperative robotic system to be effectively evaluated in a 
virtual environment with combined real and virtual robots. 
This research is an extension to our previous work on a 
simulation-based software development methodology for 
cooperative robotic systems [3, 4]. This methodology 
supports “model continuity” so the simulation models in the 
design stage can be directly mapped to real robots to control 
the real robots in execution. It greatly eases the transition 
from simulation-based study to real robot implementation and 



increases the confidence that the final system implements the 
behavior as been developed. This research is based on the 
Discrete Event System Specification (DEVS) modeling and 
simulation framework [5]. 

The concept of virtual environment has been largely used 
by the technology of virtual reality (VR), which has been 
applied to various areas such as simulation of manufacturing 
plants, the planning of robotic workcells, and robot 
teleoperation systems. While the research of VR mainly deals 
with the interaction with human operators, our work focuses 
on the interaction between robots and the virtual environment. 
The following research work is related to our research from 
this perspective. Komoriya and Tani [6] developed a virtual 
environment that allows a single real robot to be 
experimented in a virtual environment. Wang [7] proposed a 
simulation environment that allow real and virtual robot to 
work together. The work of RAVE [8] developed a simulation 
environment that supports multiple mobile robotic systems. 
Our research extends these works by developing a well-
defined architecture, an incremental development process, 
and by integrating experimental frames to measure 
cooperative robotic systems with combined real and virtual 
robots in a systematic way. 

This paper is organized as follows. Section 2 presents the 
virtual measuring environment from three aspects: the 
architecture, the measuring process, and the relationship to 
experimental frames. Section 3 describes a robotic convoy 
system as an illustrative example. The models of this system 
are first described, several metrics are then presented, and 
some preliminary simulation data is given. Section 4 
concludes this work and provides future research directions. 

 
2. A VIRTUAL EVALUATION 
ENVIRONMENT FOR ROBOTIC SYSTEMS 
The effectiveness of this simulation-based virtual evaluation 
environment is supported by a well-defined architecture, an 
incremental measuring process, and by integrating 
experimental frames to specify metrics for performance 
measurement. Next we present these three aspects 
respectively.  
 
2.1 Architecture of the Virtual Evaluation 
Environment 
In this research we view robotic systems as a particular form 
of real-time systems that monitor, respond to, or control, an 
external environment. This environment is connected to the 
computer system through sensors, actuators, and other input-
output interfaces [9].  A robotic system from this point of 
view consists of sensors, actuators and the decision-making 
unit. A cooperative robotic system is composed of a 
collection of robots that communicate with each other and 
interact with an environment. 

This above description suggests the basic structure for a 
simulation-based virtual environment for robotic systems: an 

environment model, and a collection of robot models that 
include a decision making model, sensors, and actuators. The 
environment model represents the real environment within 
which the robotic system will be executed. It may include 
virtual obstacles, virtual robots, or any other entities that are 
useful for simulation-based study. It forms a virtual 
environment for the robots. The robot model represents the 
control software that governs the robot’s behavior. It also 
includes sensor and actuator interfaces to bridge the decision-
making model and the simulation-based virtual environment. 
In our research, we clearly separate a robot’s decision-making 
unit, which is modeled as a DEVS atomic or coupled model, 
from the sensors and actuators that are modeled as DEVS 
Activities. Couplings can be added between DEVS Activities 
and the environment model thus messages can be passed 
between the decision-making model and the environment 
model through sensor/actuator Activities.  
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Figure 1: Architecture of robot-in-the-loop simulation 

 
The clear separation between robots’ decision-making 

model and sensor/actuator interfaces brings several 
advantages. First, it separates a robot’s decision-making from 
hardware interaction, thus making it easier for the designer to 
focus on the decision-making model, which is the main 
design interest. Secondly, the existence of a sensor/actuator 
interface layer makes it possible for the decision-making 
model to interact with different types of sensors/actuators, as 
long as the interface functions between them are maintained 
the same. Thus depending on different experimental and 
measuring objectives, a robot model can be equipped with 
different sensors/actuators to be experimented and measured. 
Our previous work [10] has taken advantage of these features 
to allow direct transferring of the decision-making models 
from simulation to real robots execution – a capability 
referred as model continuity. During simulation, the decision-
making model interacts with a virtual environment through 
virtual sensors/actuators; during real execution, the real 
robots’ decision-making models interacts with a real 
environment through real sensor/actuator interfaces. An 
intermediate stage can also be developed to allow the 
decision-making model on a real robot to interact with the 
simulation-based virtual environment. We call this stage 
robot-in-the-loop simulation. It is achieved by configuring a 
real robot to use a combination of virtual and real 



sensors/actuators. For example, Figure 1 shows an 
experimental setup where one real mobile robot works 
together with a virtual environment. In this example, the 
mobile robot uses its virtual sensor to get sensory input from 
the virtual environment and uses its real motor interface to 
move the robot. As a result, this real robot moves in a 
physical field based the sensory input from a virtual 
environment. Within this virtual environment, the robot can 
“see” virtual obstacles and other virtual robots that are 
simulated by computers. This capability of robot-in-the-loop 
simulation brings simulation-based study one step closer to 
the reality. It also makes it possible to study and measure 
several real robots within a large robotic system that may 
include hundreds of robots. In this case, the rest of robots can 
be provided by the simulation-based virtual environment.  

One important issue for the robot-in-the-loop simulation 
is the synchronization between the real robots and the virtual 
environment. For example, in Figure 1, when the decision-
making model issues a moving command, the real robot will 
move a distance in the physical environment. This change of 
position should also be updated by the virtual environment. 
For this purpose, each real robot has a virtual counterpart in 
the virtual environment. When a real robot moves, the 
position of its virtual counterpart will be updated. Thus the 
synchronization between the real robot and the virtual 
environment is actually the synchronization between the real 
robot and its virtual counterpart. Ideally, an independent 
monitoring system is needed to track the movement of the 
real robots and then inform the virtual environment to 
synchronize the distance and time of robots’ movements. In 
our current implementation, a set of HIL (hardware-in-the-
loop) sensors/actuators has been developed. These HIL 
sensors/actuators drive the real sensor/actuators, while in the 
meantime are coupled to the virtual environment thus 
messages can be sent to it. For the example shown in Figure 
1, the HIL motor drives the motor of the robots. In the 
meantime it catches the moveComplete signal returned from 
the motor and then sends a message to the virtual 
environment to update the position of its virtual counterpart. 
 
2.2 From Robot Model To Real Robot – An 
Incremental Measuring Process 

Based on this virtual measuring environment, an incremental 
measuring process is developed. This process includes three 
steps and supports smooth transitions between them. These 
steps are measuring based on conventional simulation, 
measuring based on robot-in-the loop simulation, and 
measuring based on real robot execution. Figure 2 gives an 
example with two robots to illustrate this process. 

The first step is conventional simulation, where all 
components are models and simulated by fast-mode or real-
time simulators in one computer. As shown in Figure 2(a), 
both robot models are equipped with virtual sensors and 
actuators to interact with the virtual environment. Couplings 
between two robots can also be added so they can send 

messages to each other. We note that this is the same setup as 
the simulations that most robotic research uses. It has the 
most flexibility as all components are models and different 
configurations can be easily applied to measure the system 
under development. 
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Figure 2: An incremental measuring process 

 
The second step is robot-in-the-loop simulation where 

one or more real robots are measured and experimented 
within a virtual environment together with other virtual robots 
(robot models) that are simulated by computer. In this step, 
the virtual robots still use virtual sensors/actuators. However, 
depending on the measuring objectives, the real robots may 
have a combination of virtual and HIL sensors/actuators. For 
example, the real robot shown in Figure 2(b) uses a virtual 
sensor and a HIL actuator. The couplings between the two 
robots are maintained the same so the real and virtual robots 
can interact with each other in the same way as in the first 
step. However, the real commutation in this step happens 
across a wireless network, which is transparent to the robots. 
Since real robots are involved in the simulation, robot-in-the-
loop simulation has to run in a real-time fashion.  

The final step is the real system measurement, where real 
robots are measured in a real physical environment. These 
robots use real sensors and actuators. They communicate in 
the same way as the first two steps since the couplings 
between them are not changed through the process. The 
measurement of this step is from the reality, thus having the 
most fidelity. However, it is also most costly and time 
consuming among the three steps. 

This incremental measuring process brings simulation-
based study closer and closer to the reality. As the process 
proceeds, the flexibility (easy to experiment different 
configurations) and productivity (time saving and cost saving) 
of the measurement decreases and the fidelity (loyal to the 
reality) of the measurement increases.  
 
2.3. Specify Measuring Metrics Using Experimental 
Frame  

An experimental frame is a specification of the conditions 
within which the system is observed or experimented [5]. In 
DEVS-based modeling and simulation framework, an 
experimental frame is realized as a system that interacts with 
the source system, or System Under Test (SUT), to obtain the 
data of interest under specified conditions. It consists of four 
major subsections: 
• input stimuli: specification of the class of admissible 

input time-dependent stimuli. This is the class from 



which individual samples will be drawn and injected into 
the model or system under test for particular 
experiments.  

• control: specification of the conditions under which the 
model or system will be initialized, continued under 
examination, and terminated.  

• metrics: specification of the data summarization 
functions and the measures to be employed to provide 
quantitative or qualitative measures of the input/output 
behavior of the model.  Examples of such metrics are 
performance indices, goodness-of-fit criteria, and error 
accuracy bound. 

• analysis: specification of means by which the results of 
data collection in the frame will be analyzed to arrive at 
final conclusions.  The data collected in a frame consists 
of pairs of input/output time functions.  
When an experimental frame is realized as a system to 

interact with the SUT (or its model), the four specifications 
become components of the driving system. For example, a 
generator of output time functions implements the class of 
input stimuli. 

Integrate experimental frames into the virtual measuring 
environment brings the advantage that measuring metrics can 
be formally specified. More research is on the way to 
integrate them in a structured way. In the meantime a set of 
measuring metrics is also under development for cooperative 
robotic systems. 
 
3. ROBOT CONVOY: A CASE STUDY 
EXAMPLE 
The presented virtual measuring environment has supported 
the development of a robotic convoy system. Below we 
briefly describe the model of this system, its measuring 
metrics, and some preliminary results that are collected from 
simulation-based study. We note that most results presented 
in this paper are collected from simulations that do not 
involve real robots. But in the next step we plan to measure 
the system using robot-in-the-loop simulation and expect to 
reach more interesting results. For example, we plan to use 
one real robot to run robot-in-the-loop simulation to check the 
convoy speed of this real robot and compare it with the data 
collected from the conventional simulation. Another result 
that we plan to check is to use two real robots neighboring to 
each other and then check the back robot’s position errors 
based on the position and direction of its front robot in the 
physical environment. 
 
3.1 System Description and System Model 
This robot convoy system consists of an indefinite number of 
robots, saying N robots (N>1). These robots are in a line 
formation where each robot (except the leader and the ender) 
has a front neighbor and a back neighbor. The robots used in 
this system are car type mobile robots with wireless 

communication capability. They can move forward/backward 
and rotate around the center, and have whisker sensors and 
infrared sensors. [11]. 

One of the basic goals of this convoy system is to 
maintain the coherence of the line formation and to 
synchronize robots’ movements. Synchronization means a 
robot cannot move forward if its “front” robot doesn’t move, 
and it has to wait if its “back” robot doesn’t catch up. To 
serve this purpose, synchronization messages are passed 
between a robot and its neighbors. To achieve coherence of 
the line formation, the moving parameters of a “front” robot 
are passed back. This allows the back robot to plan its own 
movement accordingly based on its front robot’s movement. 
The system has no global communication and coordination 
since we want to study how global behavior can be achieved 
using localized sensing and communication. 
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Figure 3: System model of the robotic convoy system 
 
Figure 3 shows the model of this system. As we can see, 

this model includes N models (each of them is a DEVS 
coupled model), which are corresponding to the N robots in 
the system. Each intermediate robot model has two input 
ports: FReadyIn, BReadyIn and two output ports: FReadyOut, 
BReadyOut. These ports are used to send and/or receive 
synchronization messages between robots and to pass moving 
parameters from a “front” robot to the “back” robot. The 
couplings between them are shown in Figure 3.  

During the convoy, the leader robot (Robot1 in Figure 3) 
decides the path of convoy. Meanwhile, it will turn around if 
its infrared sensors indicate that there are obstacles ahead. All 
other robots conduct movement based on their sensory input 
and the moving parameters passed back from their front 
robots. Specifically, a robot will “predict” where its front 
robot is and turn to that direction. It then moves forward or 
backward to “catch” its front robot. After that it may go 
through an “adjust” process to make sure that it does not lose 
its front robot. This adjust process is necessary because noise 
and variance exist during a movement so a robot will not 
reach the desired position and direction after the movement. 
During adjustment, a robot “scans” around until it finds its 
front robot. Then it sends out a synchronization message to 
“inform” its front and back neighbors. Thus robots actually go 
through a basic “turn—move—adjust—inform” routine. For 
example, a robot Ri-1 will turn angle αi-1 to the direction of its 
front robot Ri-2, move distance di-1 to “catch” its front robot, 



and then adjust itself with angle βi-1 to make sure it “sees” its 
front robot Ri-2. Figure 4 shows these moving parameters. 
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Figure 4: Moving parameters for robots’ convoy 

 
After the adjustment, Ri-1 sends out a synchronization 

message to its neighbors. This synchronization message 
contains information of αi-1, di-1, and βi-1. Based on this 
information and its sensory data, Ri plans its movement. This 
is shown by Figure 4 and formulated by formula (1)-(3). 
Among these formulas, δi is the angle (direction) difference 
between Ri and Ri-1; a is the distance between robot Ri and Ri-1 
and can be calculated from the robot’s infrared sensor data 
and the size of the robot.  Specifically, the turning angle αi of 
Ri is calculated by formula (1); the moving distance di can be 
calculated from formula (2), where D is the desired distance 
between Ri and Ri-1. Then the new angle difference δi' 
between Ri and Ri-1 is updated by formula (3), where βi is the 
adjusting angle for Ri. We note that due to noise and variance, 
the δi' calculated from formula (3) will not be the exact angle 
difference between Ri and Ri-1. However, it seems that this 
error does not accumulate as time proceeds. 
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The model of each robot is developed based on the 

subsumption architecture [12]. It has the Avoid model to 
avoid collisions with any objects; the Convoy model to 
control robot’s movement based on the rules as described 
above. It also has DEVE Activities to represent the 
sensor/actuator interfaces of the robot. A detailed description 
of a similar model can be found at [3].  

Figure 5 shows the Environment model that we used for 
this example. This Environment model includes 
TimeManager models and the SpaceManager model. For 
each robot, there is a TimeManager corresponding to it. This 
TimeManager models the time for a robot to conduct a 
movement. The SpaceManager models the moving space, 

including the dimension, shape and location of the field and 
the objects inside the field. It also keeps track of robots’ (x,y) 
positions and moving directions during simulation. Such 
tracking is needed to supply robots with the correct sensory 
data. To account for variability in the real motion, a random 
number generator provides a source of additive noise. Note 
that in this example we have ignored the dynamics of a 
movement as we treat each movement as an atomic action so 
the positions and directions of robots are updated discretely. 
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Figure 5: Environment model 

 
With all these models, simulation was run and a graphic 

user interface was developed to show robots’ movements. 
Figure 6 shows two snapshots of a robotic convoy system 
with 30 robots within a field surrounded by walls. As can be 
seen in this system, robots will not follow the exact track of 
the leader robot. However, they are able to follow their 
immediate front robots closely, thus forming a coherent team 
from a global point of view. Note that obstacles can also be 
easily added within the field. 

 

    
(1)    (2) 
Figure 6: Snapshot of robots in motion 

 
3.2 Measuring Metrics and Simulation Results 
A good set of measuring metrics is very important to study 
this robotic convoy system. This section describes several 
metrics that we have developed. These metrics are neither 
final nor complete. However, they serve as a starting point to 
analyze and measure this system. Some preliminary 
simulation results based on these metrics are also presented 
and analyzed.  

 
Convoy Speed and Number of Adjustment 

The convoy speed of the team and the number of 
adjustment for each robot are among the most obvious results 
that can be obtained from simulation-based study. Both them 
can be viewed as metrics for the system’s performance. In 
fact, these two metrics are correlated to each other: the larger 
the number of adjustment, the slower the convoy speed. Since 



robots move in a coordinated way, we define the convoy 
speed as the speed of the leader robot. This can be calculated 
by dividing the moving distance by the logic time of 
simulation. The number of adjustment can be obtained 
directly from each robot.  

 
Formation Coherence  

Due to noise and variance in reality, there exists 
difference between a robot’s real position, direction (angle) 
and its desired position and direction. This difference is 
affected by the variance of movement in real execution, 
which is modeled by adding noise into robot’s movement in 
simulation. On the other hand, even though variance exists, 
this system can still conduct the convoy with some level of 
formation coherence. This is because an “adjust process” has 
been implemented that allows robots to adjust their 
positions/directions based on the feedback from its infrared 
sensors. Apparently the level of formation coherence is 
affected by the variance of movement. If this variance is large 
enough, even though a adjust process exists, the system will 
eventually fail to maintain its formation coherence.  

To study this problem, we calculate each robot’s position 
errors under the effect of distance noise factor (DNF) and 
angle noise factor (ANF). These two factors are the ratio of 
the maximum distance variance and maximum angle variance 
as compared to the robot’s moving distance respectively. For 
example, if the angle noise factor is 0.1 and a robot moves 
forward 60, after its movement the robot will have maximum 
6 degrees variance from its desired direction. Once each 
robot’s position error is known, the average position error of 
the team can be derived. This average is an indicator for the 
convoy system’s formation coherence: the smaller the error is, 
the more coherent the convoy system is. Formula (4) – (7) 
shows how the average position error can be calculated. In 
these formulas, D is the desired distance between robots and 
N is the total number of robot. In case the formation 
coherence is broken, saying robot Ri lose itself, Ei(t) will 
increase continuously, making the average error E(t) increase 
too.  Note that the desired position (xi-desired, yi-desired) of Ri is 
calculated from its front robot Ri-1’s position, not related to 
any specific formations. Thus systems with different line 
formation shapes may have the same position errors. 
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Figure 7 shows the average poison error for a system 

with 30 robots, DNF=0.1, and ANF=0.08. The system starts 
with all robots at their desired positions. Thus as simulation 
proceeds, the position error increases from 0. It then reaches a 
“stable” stage where the position error oscillates around an 

average value (35.7 In this example). As we can see, in this 
system the position error does not accumulate over time. Thus 
we say that this system’s formation coherence is maintained. 

 
average position error with 30 robots

0
5

10
15
20
25
30
35
40
45

1
78

9
15

77
23

65
31

53
39

41
47

29
55

17
63

05
70

93
78

81
86

69
94

57
10

24
5

11
03

3

simulation steps

po
si

tio
n 

er
ro

r

DNF=0.1, ANF=0.08

 
Figure 7: Average position error with 30 robots 

 
Sensitivity 

Since the formation coherence is affected by the noise 
factors, sensitivity analysis is useful to study if the system is 
robust to noise factors. To conduct sensitivity analysis, we run 
simulations with different noise factors and calculate the 
position errors. Figure 8 shows a system with 30 robots’ 
average position errors under the effect of three sets of DNF 
and ANF: set 1 has DNF = 0.04, ANF = 0.04; set 2 has DNF 
=0.1, ANF = 0.08; set 3 has DNF = 0.2, ANF = 0.1. For 
analysis purpose, we omit the “transient ” stage when the 
simulations start. 
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Figure 8: Average position errors vs. noise factors 

 
Figure 8 shows that different noise factors result in 

different error patterns. However, for this system, all three 
errors are still maintained within a boundary (they do not 
accumulate as time increases). By calculating the average of 
them, we have average1 = 35.1, average2 =35.7, and average3 
=36.6. From these data we can see that as the noise factor 
increases, the position error increases too. However, this 
change is insignificant as compared to change of the noise 
factors. Although more analysis is needed to reach any 
quantitative conclusion, we can say that this system is 
insensitive to the noise factors as long as these factors are 
within a safe boundary. This is because the system 
impalements an adjust process that allows robots to adjust 
themselves based on the feedback from their IR sensors. 

 



Scalability 
Scalability refers to the ability of a system to maintain its 

quality as the scale of the system increases. To study 
scalability, we change the number of robots and run 
simulation to see how that affects system’s average position 
error (average over number of robots and over time). Figure 9 
shows the position errors for the number of robots to be 10, 
20, 30, and 40 with DNF =0.1 and ANF =0.08. It shows that 
the average position error increases as the number of robot 
increases. If this trend holds true with more robots, the system 
is not scalable in the sense that it will eventually break as 
more robots are added into the system. 
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Figure 9: Average position errors vs. number of robots 

 
4. CONCLUSION 

This paper presents a simulation-based virtual evaluation 
environment for cooperative robotic systems. This virtual 
environment allows a combination of real and virtual robots 
to work together for a system-wide study and measurement. 
An incremental measuring process is developed to transition 
simulation-based study closer to reality as the process 
proceeds. Based on this virtual environment, a robotic convoy 
system was developed and presented in this paper as an 
illustrative example. Coherence metrics for this system were 
defined and preliminary simulation results were discussed.  

We note that most results presented in this paper are 
collected from simulations that do not involve real robots. But 
in the next step we plan to measure the system using robot-in-
the-loop simulation and expect to gather more interesting 
results. In the meantime, a set of more complete evaluation 
metrics is also under development for the robotic convoy 
systems presented in this paper. 
 
5. ACKNOWLEDGEMENT 
This research was supported  by NSF grant DMI- 0122227,  
“DEVS as a Formal Framework for Scalable Enterprise 
Systems.” 
 
6. REFERENCE 

[1] Dudek, G., Jenkin, M., and Milios, E., “A Taxonomy of 
Multirobot Systems”, Robot Teams, Edited by Balch, T., and 
Parker L.E., A K Peters, 2002 

[2] Balch, T., “Taxonomies of Multirobot Task and Reward”, 
Robot Teams, Edited by Balch, T., and Parker L.E., A K 
Peters, 2002 
[3] Hu, X., and Zeigler, B. P., “Model Continuity to Support 
Software Development for Distributed Robotic Systems: a 
Team Formation Example”, Journal of Intelligent & Robotic 
Systems, Theory & Application, Special Issue: Multiple and 
Distributed Cooperating Robots, pp. 71-87, January, 2004 
[4] Hu, X., and Zeigler, B.P., “A Simulation-based Software 
Development Methodology for Cooperative Real-time 
Intelligent Systems“, to appear in Annual of Complex Systems 
and Intelligence Science, World Scientific Publishing Co., 
2004 
[5] Zeigler, B.P., Kim, T.G., et al.. Theory of Modeling and 
Simulation. New York, NY, Academic Press, 2000. 
[6] Komoriya, K.; Tani, K., “Utilization of the virtual 
environment system for autonomous control of mobile 
robots”, Intelligent Motion Control, 1990. Proceedings of the 
IEEE International Workshop on, Volume: 2, 20-22 August 
1990 
[7] Wang. J.: Methodology and design principles for a generic 
simulation platform for distributed robotic system 
experimentation and development. Systems, Man, and 
Cybernetics, 1997. Computational Cybernetics and 
Simulation., 1997 IEEE International Conference on, Volume: 
2, 1997 Page(s): 1245 -1250 vol.2 
[8] Dixon, K.; Dolan, J.; Wesley Huang; Paredis, C.; Khosla, 
P., “RAVE: a real and virtual environment for multiple 
mobile robot systems”, Intelligent Robots and Systems, 1999. 
IROS '99. Proceedings. 1999 IEEE/RSJ International 
Conference on , Volume: 3 , 17-21 Oct. 1999 
[9] Shaw, S. C., Real-time Systems and Software, John Wiley 
& Sons, 2001 
[10] Hu, X., A Simulation-based Software Development 
Methodology for Distributed Real-time Systems, Dissertation, 
University of Arizona, 2003 
[11] Peipelman. J., N. Alvarez, K. Galinet, R. Olmos.: 498 A 
& B Technical Report. Department of Electrical and 
Computer Engineering, University of Arizona, 2002 
[12] Brooks, R. A., "A Robust Layered Control System For A 
Mobile Robot", IEEE Journal Of Robotics And Automation, 
RA-2, April. pp. 14-23, March 1986 
 
 


